1.So, the first robot to talk about is called STriDER.
第一个要介绍的机器人叫STriDER(Stride迈大步,Strider迈大步者)。
2.It stands for Self-excited Tripedal Dynamic Experimental Robot.
全称是自激式三足动态实验机器人 (Self-excited Tripedal Dynamic Experimental Robot)。
3.It’s a robot that has three legs, which is inspired by nature.
这种机器人 受自然界的启发有三条腿。
4.But have you seen anything in nature an animal that has three legs?
不过您在自然界中 见过三条腿的动物吗?
5.Probably not. So, why do I call this a biologically-inspired robot? How would it work?
应该没有。 那我们为什么要称其为仿生机器人呢?运作原理是什么呢?
6.But before that, let’s look at pop culture.
说之前,先看看当下流行文化。
7.So, you know H.G. Wells War of the Worlds novel and movie.
您应该知道赫伯特·乔治·威尔斯(H.G. Wells)的小说《世界大战》,以及由此改编的电影。
8.And what you see over here is a very popular video game.
您现在看到的是一款流行 视频游戏。
9.In the fiction they describe these alien creatures are robots that have three legs that terrorize Earth.
在小说里,威胁地球的外星生物 被描述成三足机器人。
10.But my robot, STriDER, does not move like this.
不过我的机器人,STriDER,不是这样移动的。
11.So, this is an actual dynamic simulation animation.
这是一段真实的动态仿真动画。
12.I’m just going to show you how the robot works.
我要展示的是机器人是如何移动行走的。
13.It flips its body 180 degrees.
空中转体180度。
14.It swings its leg between its two legs to catch the fall.
其中一条腿,在另两条腿中间荡秋千。
15.So, that’s how it walks. But when you look at us human being, bipedal walking, what you’re doing is you’re not really using a muscle
这是他的行走方式。不过研究一下 我们人类的两足行走, 人类不是用肌肉
16.to lift your leg and walk like a robot. Right?
提起一条腿迈出去,像机器人那样。对吧?
17.What you’re doing is you really swing your leg and catch the fall, stand up again, swing your leg and catch the fall.
我们实际上是把一条腿荡出去,然后落地, 站稳,然后再荡腿…落地…。
18.Using your built-in dynamics, the physics of your body, just like a pendulum.
使用您的身体内置动力,身体动力 就像一个钟摆。
19.We call that the concept of passive dynamic locomotion.
我们称之为被动动力运动概念。
20.What you’re doing is, when you stand up, potential energy to kinetic energy, potential energy to kinetic energy.
身体直立情况下,您所做的就是 把势能转变 为动能。
21.It’s a constantly falling process.
这是一个不断下落的过程。
22.So, even though there is nothing in nature that looks like this, really we were inspired by biology and applying the principles of walking
所以,虽然自然界中没有三足动物, 实际上我们还是受到了生物的启发 把这套原理运用于这种机器人,
23.to this robot, thus it’s a biologically inspired robot.
所以它是仿生机器人。
24.What you see over here, this is what we want to do next.
您这里所见的就是我们下一步的目标。
25.We want to fold up the legs and shoot it up for long-range motion.
我们要让机器人把腿像弹簧一样折叠起来,然后弹射出去,做长距离运动。
26.And it deploys legs, it looks almost like Star Wars.
然后展开腿,就像星球大战一样。
27.When it lands, it absorbs the shock and starts walking.
落地有,机器人的三条腿吸收落地震动,然后开始步行。
28.What you see over here, this yellow thing, this is not a death ray.
这里面黄色的区域,不是死光。
29.This is just to show you that if you have cameras or different type of sensors because it is tall, it’s 1.8 meters tall, you can see over obstacles like bushes and those kind of things.
这演示的是装有一部摄像机 或者其他类型的传感器, 因为机器人个高,有1.8米高, 可以从灌木丛之类的障碍物上方露出头观察。
30.So we have two prototypes.
我们有两种型号的原型机。
31.The first version, in the back, that’s STriDER I.
第一个型号,在后面,那是STriDER I型。
32.The one in front, the smaller, is STriDER II.
前面那个,小一点儿的,是STriDER II型。
33.The problem that we had with STriDER I is it was just too heavy in the body. We had so many motors, you know, aligning the joints, and those kinds of things.
STriDER I型遇到的问题是 机器人太重了。我们装了太多的马达, 诸如调整关节之类的东西。
34.So, we decided to synthesize a mechanical mechanism so we can get rid of all the motors, and with a single motor we can coordinate all the motions.
所以,我们决定综合成一个机械机构, 我们就可以用一部马达,代替所有的马达, 我们就可以协调所有的动作。
35.It’s a mechanical solution to a problem, instead of using mechatronics.
这是用机械解决办法,代替机电一体化。
36.So, with this now, the top body is light enough so it can walk in a lab.
所以现在机器人上部机体就够轻巧了,可以在实验室内走路。
37.This was the very first successful step.
这是向成功迈出第一步。
38.It’s still not perfected. It’s coffee falls down, so we still have a lot of work to do.
还不完美。这个实验机器人摔倒了, 所以后面还有我们忙的。
39.The second robot I want to talk about is called IMPASS.
第二个要介绍的机器人缩写是IMPASS。
40.It stands for Intelligent Mobility Platform with Actuated Spoke System.
它带有驱动辐条系统的智能移动平台(Intelligent Mobility Platform with Actuated Spoke System)。
41.So, it’s a wheel-leg hybrid robot.
它是一种“轮-腿“混合机器人。
42.So, think of a rimless wheel, or a spoke wheel.
无框轮, 或者叫辐条轮。
43.But the spokes individually move in and out of the hub.
每个辐条都可以缩进缩出轮毂。
44.So, it’s a wheel-leg hybrid.
所以它是”轮腿”混合机器人。
45.We are literally re-inventing the wheel here.
我们又重新发明了一种轮子。
46.Let me demonstrate how it works.
让我演示一下工作原理。
47.So, in this video we’re using an approach called reactive approach.
这段视频中我们用了一种方法 被称为响应式方法。
48.Just simply using the tactile sensors on the feet, it’s trying to walk over a changing terrain, a soft terrain where it pushes down and changes.
只在利用足部的触觉传感器, 这机器人在崎岖不平的地形行走, 地面柔软,随着它的下压而改变。
49.And just by the tactile information it successfully crosses over these type of terrain.
仅依靠足部传感器的信息, 它成功的跨越了这些地形。
50.But, when it encounters a very extreme terrain, in this case, this obstacle is more than three times the height of the robot, Then it switches to a deliberate mode,
不过,它遇到极端地形时, 如视频中显示的,一个三倍于 机器人高度的障碍物, 它会切换到谨慎模式,
51.where it uses a laser range finder, and camera systems, to identify the obstacle and the size, and it plans, carefully plans the motion of the spokes,
这里机器人利用激光测距仪, 和摄像系统,来找出障碍和测量大小, 作出相应的对策,仔细的策划辐条的动作,
52.and coordinates it so that it can show this kind of very very impressive mobility.
同时协调好各部分动作,这样显示出 令人惊讶的机动性。
53.You probably haven’t seen anything like this out there.
你可能从来没有见过这样的机器人。
54.This is a very high mobility robot that we developed, called IMPASS.
这是一部机动性很高的机器人 这就是我们开发的,叫做IMPASS的机器人。
55.Ah! isn’t that cool?
很酷吧?
56.When you drive your car, when you steer your car, you use a method called Ackermann steering.
您开车的时候, 转动方向盘,这种方式 叫阿克曼转向。
57.The front wheels rotate like this.
前轮像这样转动。
58.For most of those small wheeled robots they use a method called differential steering where the left and right wheel turn the opposite direction.
对于那些小型轮式机器人, 它们一般采用差速转向, 也就是左轮和右轮向相反方向转动。
59.For IMPASS, we can do many many different type of motion.
对于IMPASS机器人,我们可以采用不同方式的转向运动。
60.For example, in this case, even though left and right wheel is connected with a single axle, rotating at the same angle of velocity.
如视频中演示的那样,它的左右轮连接在一个轴上, 以同样的转速转动。
61.We just simply change the length of the spoke.
不同的是,我们依靠调解辐条的长度实现转向。
62.It affects the diameter, and then it turns to the left, turns to the right.
辐条长度的变化改变了辐条轮的直径大小,以此实现左右转弯。
63.So, these are just some examples of the neat things that we can do with IMPASS.
这些只是一些IMPASS可以做的巧妙动作 的事例。
64.This robot is called CLIMBeR, Cable-suspended Limbed Intelligent Matching Behavior Robot.
这个机器人叫CLIMBeR(攀登者), 全称是:钢缆吊肢智能匹配行为机器人(Cable-suspended Limbed Intelligent Matching Behavior Robot.)。
65.So, I’ve been talking to a lot of NASA JPL scientists, at JPL they are famous for the Mars rovers.
我曾和许多NASA喷气推进实验室的科学家们聊过, 在喷气推进实验室,最出名的就是火星车。
66.And the scientists, geologists always tells me that the real interesting science, the science-rich sites, are always at the cliffs.
科学家们和地质学家们经常告诉我, 真正有趣的科学、 富含科学知识的地点就是在悬崖峭壁上。
67.But the current rovers can not get there.
不过目前火星车还探测不了峭壁。
68.So, inspired by that we wanted to build a robot that can climb a structured cliff environment.
受此启发,我们要建造一台 攀登峭壁的机器人。
69.So, this is CLIMBeR.
那就是CLIMBeR机器人。
70.So, what it does, it has three legs. It’s probably difficult to see, but it has a winch and a cable at the top.
它有三条腿。可能很难看到, 但它顶部有一个绞盘,一条钢缆。
71.And it tries to figure out the best place to put its foot.
它正在测算最好的立足点。
72.And then once it figures that out in real time it calculates the force distribution.
一旦测算好, 它会实时计算出力的分布。
73.How much force it needs to exert to the surface so it doesn’t tip and doesn’t slip.
计算出需要施加多大的力, 确保不翻下来,不打滑。
74.Once it stabilizes that it lifts a foot, and then with the winch, it can climb up these kind of thing.
一旦稳定下来,抬起一条腿, 然后利用绞盘,可以向上爬一点点。
75.Also for search and rescue applications as well.
也可以应用在搜索和救援工作上。
76.Five years ago I actually worked at NASA JPL during the summer as a faculty fellow.
五年前,我夏季在NASA喷气推进实验室 做教员研究员。
77.And they already had a six legged robot called LEMUR.
他们有个六足机器人,称作LEMUR。
78.So, this is actually based on that. This robot is called MARS, Multi-Appendage Robotic System. So, it’s a hexapod robot.
基于此我们开发一台机器人,称作MARS(Mars, 火星) 多附体机器人系统(Multi-Appendage Robotic System)。它是一种六足机器人。
79.We developed our adaptive gait planner.
我们开发了自适应步态规划软件。
80.We actually have a very interesting payload on there.
我们放了一个十分有趣的有效载荷。
81.The students like to have fun. And here you can see that it’s walking over unstructured terrain.
学生们喜欢有趣的机器人。您可以看到 机器人在不规则地形上行走。
82.It’s trying to walk on the coarse terrain, sandy area, but depending on the moisture content or the grain size of the sand the foot’s soil sinkage model changes.
它试图在粗糙地形上行走, 沙地上, 取决于水分含量或沙粒大小的 脚下的泥土下沉模式变化。
83.So, it tries to adapt its gait to successfully cross over these kind of things.
机器人自适应的调整步态以便成功翻越这类地形。
84.And also, it does some fun stuff, as can imagine.
除此之外,它还可以做出一些搞笑的事。
85.We get so many visitors visiting our lab.
我们的实验室有很多参观者。
86.So, when the visitors come, MARS walks up to the computer, starts typing “Hello, my name is MARS.”
有参观者来的时候,MARS机器人会走到计算机旁边, 并输入“你好!我叫MARS。”
87.Welcome to RoMeLa, the Robotics Mechanisms Laboratory at Virginia Tech.
欢迎来到RoMeLa, 弗吉尼亚理工大学的“机器人技术与机械实验室(RoMeLa)。
88.This robot is an amoeba robot.
这个机器人是一个变形虫机器人。
89.Now, we don’t have enough time to go into technical details, I’ll just show you some of the experiments.
我们没有时间讲述技术细节, 我将展示些实验。
90.So, this is some of the early feasibility experiments.
这是一些早期的可行性实验。
91.We store potential energy to the elastic skin to make it move.
弹性表皮上存有势能,使之移动。
92.Or use an active tension cords to make it move forward and backward. It’s called ChIMERA.
利用一个有张力绳子 使之前进和后退。它被称为嵌合体(ChIMERA)。
93.We also have been working with some scientists and engineers from UPenn to come up with a chemically actuated version of this amoeba robot.
我们还和来自宾州大学的科学家 和工程师合作, 开发出化学驱动版本的 变形虫机器人。
94.We do something to something And just like magic, it moves. The blob.
我们鼓捣一下, 然后,就像变魔术,它移动了。就像科幻电影The Blob。
95.This robot is a very recent project. It’s called RAPHaEL.
这个机器人是最近的项目。它叫RAPHaEL
96.Robotic Air Powered Hand with Elastic Ligaments.
带有弹性韧带的气压机器手臂 (Robotic Air Powered Hand with Elastic Ligaments)。
97.There are a lot of really neat, very good robotic hands out there in the market.
市面上有不少不错的机器手臂。
98.The problem is they’re just too expensive, tens of thousands of dollars.
不过动辄就要几万美元太贵了。
99.So, for prosthesis applications it’s probably not too practical, because it’s not affordable.
对于假肢应用可能不太现实, 因为太贵了。
100.We wanted to go tackle this problem in a very different direction.
我们想到一个非常不同的方法去解决这个问题。
101.Instead of using electrical motors, electromechanical actuators, we’re using compressed air.
不使用电动马达,机电执行器, 而是用压缩空气作动力。
102.We developed these novel actuators for joints.
我们开发这些新型驱动器的关节。
103.It is compliant. You can actually change the force, simply just changing the air pressure.
它是兼容的。你其实可以通过调节气压 就很容易地来改变驱动力的大小。
104.And it can actually crush an empty soda can.
它的力气可以压扁一个空可乐罐。
105.It can pick up very delicate objects like a raw egg, or in this case, a lightbulb.
也可以握住易碎的物体,如生鸡蛋 或如这展示的电灯泡。
106.The best part, it took only $200 dollars to make the first prototype.
最棒的是,这个原型机仅花费200美元。
107.This robot is actually a family of snake robots that we call HyDRAS, Hyper Degrees-of-freedom Robotic Articulated Serpentine.
这部机器人实际上是一系列蛇形机器人, 我们称之为HyDRAS, 高自由度铰接式蛇形机器人(Hyper Degrees-of-freedom Robotic Articulated Serpentine)。
108.This is a robot that can climb structures.
这是一个可以攀爬的机器人。
109.This is a HyDRAS’s arm.
这是一个HyDRAS型机器臂。
110.It’s a 12 degrees of freedom robotic arm.
它有12个自由度的机器臂。
111.But the cool part is the user interface.
不过最酷的是用户接口。
112.The cable over there, that’s an optical fiber.
这些电缆是光纤。
113.And this student, probably the first time using it, but she can articulate it many different ways.
这名学生,可能是第一次使用, 她可以用很多不同的方法操作。
114.So, for example in Iraq, you know, the war zone, there is roadside bombs. Currently you send this remotely controlled vehicles that are armed.
例如在伊拉克,在战区, 常有路边炸弹。 目前,派出的是遥控武装车辆。
115.It takes really a lot of time and it’s expensive to train the operator to operate this complex arm.
它需要很多时间和花费 来培训控制这复杂武装车辆的操作员。
116.In this case it’s very intuitive.
在这种情况下,这个机器手臂很直观。
117.This student, probably the first time using it, doing very complex manipulation task, picking up objects and doing manipulation, just like that, very intuitive.
这名学生可能是第一次使用,就能完成复杂的操作任务, 拾取物体,操作, 就像这样,非常直观。
118.Now, this robot is currently our star robot.
这部机器人,是我们的明星机器人。
119.We actually have a fan club for the robot DARwIn, Dynamic Anthropomorphic Robot With Intelligence.
我们有个DARwIn机器人兴趣小组, 智能动力人形机器人(Dynamic Anthropomorphic Robot With Intelligence)。
120.As you know we are very interested in humanoid robot, human walking, so we decided to build a small humanoid robot.
我们对人形机器人, 人类行走机器人,非常感兴趣, 我们决定造一个小型人形机器人。
121.This was in 2004, at that time this was something really really revolutionary.
在2004年,那时 这是革命性的东西。
122.This was more of a feasibility study, what kind of motors should we use?
更多的是可行性研究, 应该选用什么样的马达?
123.Is it even possible? What kind of controls should we do?
可行吗?我们做什么样的控制?
124.So, this does not have any sensors.
这个机器人没有传感器。
125.So, it’s an open loop control.
它是开环控制。
126.For those of you who probably know, if you don’t have any sensors and there is any disturbances, you know what happens.
如您所知,如果没有控制器 稍有扰动就会出问题。
127.(Laughter) So, based on that success, the following year we did the proper mechanical design starting from kinematics.
(笑声) 基于此,翌年, 我们做了正确的机械设计, 从运动学开始。
128.And thus, DARwIn I was born in 2005.
2005年,DARwIn I型诞生。
129.It stands up. It walks, very impressive.
站立,行走,令人印象深刻。
130.However, still, as you can see, it has a cord, umbilical cord. So, we’re still using external power source, and external computation.
然而,如你所见 它是有线的,还有一条脐带。我们还是用的外部电源, 以及外部运算。
131.So, in 2006, now it’s really time to have fun.
2006年,正是时候可以找乐子了。
132.Let’s give it intelligence. We give it all the computing power it needs, 1.5 gigahertz Pentium M chip, two Firewire cameras, eight gyros, accelerometer,
给他智能。我们给它所需的计算能力, 1.5GHz的Pentium M处理器, 两个火线(IEEE1394)摄像头,8个陀螺仪,一个加速度计,
133.four torque sensors on the foot, lithium power batteries.
足部四个力矩传感器,锂电池。
134.And now DARwIn II is completely autonomous.
DARwIn II是全部自主式的。
135.It is not remote controlled.
不用远程遥控。
136.There is not tethers. It looks around, searches for the ball, looks around, searches for the ball, and it tries to play a game of soccer,
没有外接连线。它查看四周,寻找球, 再查看四周,寻找球,试着踢足球,
137.autonomously, artificial intelligence.
自主式的踢球,实现人工智能。
138.Let’s see how it does. This was our very first trial, and… Video: Goal!
看看它的能耐。这是我们第一次测试, 视频:进球了!
139.So, there is actually a competition called RoboCup.
有个竞赛叫机器人世界杯赛。
140.I don’t know how many of you heard about RoboCup.
我不知道你们知不知道机器人世界杯赛。
141.It’s an international autonomous robot soccer competition.
机器人世界杯赛是自主式机器人足球赛事。
142.And the goal of RoboCup, the actual goal is, by the year 2050 we want to have full size, autonomous humanoid robots play soccer against the human World Cup champions
机器人世界杯赛的目标是, 到2050年 我们有人类大小的自主式人形机器人 与人类的世界杯冠军队进行足球比赛
143.and win.
而且要胜利。
144.It’s a true actual goal. It’s a very ambitious goal, but we truly believe that we can do it.
非常实际的目标。非常有野心的目标, 我们认为我们可以做到。
暂无讨论,说说你的看法吧