1.I want you to imagine that you’re a student in my lab.
想象一下你是我实验室里的一个学生。
2.What I want you to do is to create a biologically-inspired design.
我想让你做一个由生物激发灵感的设计。
3.And so here’s the challenge: I want you to help me create a fully 3D, dynamic, parameterized contact model.
挑战是这样的: 我想让你帮我制造出一个全3D、参数化的动力接触模型。
4.The translation of that is, could you help me build a foot?
翻译一下,意思就是能不能帮我造一只脚?
5.And it is a true challenge, and I do want you to help me.
这件事真的很有挑战,我确实需要你们的帮助。
6.Of course, in the challenge there is a prize.
当然,这是有奖励的。
7.It’s not quite the TED Prize, but it is an exclusive t-shirt from our lab.
不太算是TED奖品,但是我们实验室的特别版T恤。
8.So please send me your ideas about how to design a foot.
所以请将你们关于如何设计一只脚的想法发个我。
9.Now if we want to design a foot, what do we have to do?
好,如果我们想设计一只脚,需要做什么呢?
10.We have to first know what a foot is.
首先我们需要知道脚是什么。
11.If we go to the dictionary, it says, “It’s the lower extremity of a leg that is in direct contact with the ground in standing or walking”
如果我们去查字典,字典上说:“脚是在站立及行走时, 腿的最末端直接接触地面的部位。”
12.That’s the traditional definition.
这是传统的定义。
13.But if you wanted to really do research, what do you have to do?
但如果你真的想要做研究,还要做什么呢?
14.You have to go to the literature and look up what’s known about feet.
你必须还要去翻阅文献,看关于脚人们都知道了些什么。
15.So you go to the literature. (Laughter) Maybe you’re familiar with this literature.
所以你去查阅了文献。(笑) 也许你对这些作品很熟悉。
16.The problem is, there are many, many feet.
问题是,这里有很多很多只脚。
17.How do you do this?
该怎么办呢?
18.You need to survey all feet and extract principles of how they work.
你需要去调查这所有的脚,并且从中提炼出它们是如何工作的理论。
19.And I want you to help me do that in this next clip.
在下一张图上,我就想让你来帮我做这件事。
20.As you see this clip, look for principles, and also think about experiments that you might design in order to understand how a foot works.
当你看这张图时,请寻找理论。 而且考虑你要设计什么样的实验 才能帮助你明白这些脚是如何工作的。
21.See any common themes? Principles?
看到有什么共同点了吗?共同的原理?
22.What would you do?
你接下来要怎么做?
23.What experiments would you run?
要进行什么样的实验?
24.Wow. (Applause) Our research on the biomechanics of animal locomotion has allowed us to make a blueprint for a foot.
哇。(鼓掌) 我们关于动物运动力方面的生物力学研究 使得我们可以为一只脚绘制出蓝图。
25.It’s a design inspired by nature, but it’s not a copy of any specific foot you just looked at, but it’s a synthesis of the secrets of many, many feet.
这是一个由自然启发而来的设计,不单单是复制你刚才看到的某只特定的脚, 而是综合了许多许多只脚的秘密。
26.Now it turns out that animals can go anywhere.
现在人们发现动物哪儿都能去。
27.They can locomote on substrates that vary as you saw — in the probability of contact, the movement of that surface and the type of footholds that are present.
它们能在不同的情况下移动—— 这些变化因素包括接触形势,表面的运动 以及它们所呈现的不同的立足点。
28.If you want to study how a foot works, we’re going to have to simulate those surfaces, or simulate that debris.
若想要研究脚是如何工作的 我们就需要模仿这些表面,或那些碎片。
29.When we did that, here’s a new experiment that we did: we put an animal and had it run — this grass spider — on a surface with 99 percent of the contact area removed.
当我们进行模仿时,这里是我们做的一个新实验: 我们将一只动物放上去然后让它跑——这是一只草蛛—— 被放在一个99%的接触区域都被去除了的表面上。
30.But it didn’t even slow down the animal.
但它甚至没有使动物的移动缓慢下来。
****************************************************************
本文来源于[育能软件] 更多更全,请登录NengSoft.com
****************************************************************
31.It’s still running at the human equivalent of 300 miles per hour.
草蛛仍然以相当于人类300英里/小时的速度移动着。
32.Now how could it do that? Well, look more carefully.
它是怎么办到的?好吧,仔细的看。
33.When we slow it down 50 times we see how the leg is hitting that simulated debris.
当我们以50倍的速度将其放慢,就可以看到腿是如何接触那些仿制的碎片的。
34.The leg is acting as a foot.
腿发挥了脚的功能。
35.And in fact, the animal contacts other parts of its leg more frequently than the traditionally defined foot.
事实上,动物用腿的其他部位接触表面 比用传统定义界定的足频繁得多。
36.The foot is distributed along the whole leg.
足分布在整条腿上。
37.You can do another experiment where you can take a cockroach with a foot, and you can remove its foot.
你也可以做另一个实验,用一只带脚的蟑螂, 然后把它所有的脚都去掉。
38.I’m passing some cockroaches around. Take a look at their feet.
我在分发一些蟑螂。来看看他们的脚是什么样子的。
39.Without a foot, here’s what it does. It doesn’t even slow down.
没有了脚,这是他们继续做的事。它甚至都没有慢下来。
40.It can run the same speed without even that segment.
没有那个部分它们仍可以以同样的速度移动。
41.No problem for the cockroach — they can grow them back, if you care.
别为蟑螂担心——它们还能把脚长回来,如果你很在意。
42.How do they do it?
它们是怎么做到的?
43.Look carefully: this is slowed down 100 times, and watch what it’s doing with the rest of its leg.
仔细看:这是放慢100倍后的。 观察他们在用腿的其余部分做什么。
44.It’s acting, again, as a distributed foot.
又一次,腿作为被广泛分布的足了。
45.Very effective.
很有效果。
46.Now, the question we had is, how general is a distributed foot?
现在问题是,到底有多少动物有类似的分布足?
47.And the next behavior I’ll show you of this animal just stunned us the first time that we saw it.
下面将要为你们展示的这个动物,我们第一次看时感到很震惊。
48.Journalists, this is off the record, it’s embargoed — take a look at what that is!
记者们,这可是没人报道过的,被禁止的—— 看那是什么!
49.That’s a bipedal octopus that’s disguised as a rolling coconut.
这个两足的章鱼试图佯装成一个可以滚动的椰子。
50.It was discovered by Christina Huffard and filmed by Sea Studios, right here from Monterey.
克里斯蒂娜?胡法德发现了它 这影片由海洋工作室(Sea Studios)在蒙特瑞拍摄的。
51.We’ve also described another species of bipedal octopus.
我们也关注了另一种双足章鱼。
52.This one disguises itself as floating algae.
这一只将自己伪装成了浮动的海藻。
53.It walks on two legs and it holds the other arms up in the air so that it can’t be seen.
它用两条腿走路然后将两只胳膊高举在空中,以保证不让其他生物看见。
54.(Applause) And look what it does with its foot to get over challenging terrain.
(鼓掌) 看,当他们要通过崎岖不平的地面时是如何使用脚的。
55.It uses that beautiful distributed foot to make it as if those obstacles are not even there.
它用它们那美丽的均匀分布的足,使得这些障碍好似不存在一般。
56.Truly extraordinary.
真的很特别。
57.In 1951, Escher made this drawing. He thought he created an animal fantasy.
1951年,埃舍尔画了这幅画。他觉得自己创造出了一个神奇的动物。
58.But we know that art imitates life, and it turns out nature, three million years ago, evolved the next animal.
但是我们知道艺术模仿生命, 因此人们发现300万年前,自然进化孕育了要展出的这下一个动物。
59.It’s a shrimp-like animal called the stomatopod, and here’s how it moves on the beaches of Panama: it actually rolls, and it can even roll uphill.
这个像小虾的动物被称为口脚类动物, 这里是它如何在巴拿马的海滩上移动的: 它其实在滚动,而且竟然还能向上滚。
60.It’s the ultimate distributed foot; its whole body in this case is acting like its foot.
这最终是因为均匀分布的足;在这种情况下,它的整个身子都扮演着脚的角色。
****************************************************************
本文来源于[育能软件] 更多更全,请登录NengSoft.com
****************************************************************
61.So, if we want to then to our blueprint add the first important feature, we want to add distributed foot contact.
所以我们为我们的蓝图上加上第一个重要的特征, 我们加上均匀分布的足。
62.Not just with the traditional foot, but also the leg, and even of the body Can this help us inspire the design of novel robots?
不光是在传统的足部部位,也在腿上。 而且甚至是在身上。 这能启示我们设计出新的机器人吗?
63.We biologically inspired this robot, named RHex, built by these extraordinary engineers over the last few years.
我们受到生物的启示所创造的机器人,叫做RHex, RHex在过去几年前由这些卓越的工程师创造出来。
64.RHex’s foot started off to be quite simple, then it got tuned over time, and ultimately resulted in this half circle.
RHex的脚一开始时非常简单, 但是它总是被修改,知道最后变成了这样的半圆形。
65.Why is that? The video will show you.
这是为什么?下面这段录像将为您解开疑惑。
66.Watch where the robot, now, contacts its leg in order to deal with this very difficult terrain.
看这个机器人,现在,当它如何用腿接触这些有障碍的地表,试图翻越过去。
67.What you’ll see, in fact, is that it’s using that half circle leg as a distributed foot.
你会看到,事实上,它用这半圆形的脚当做均匀分布的足了。
68.Watch it go over this.
看它翻越这里。
69.You can see it here well on this debris.
你可以从这里看它穿过这些碎片。
70.Extraordinary. No sensing, all the control is built right into the tuned legs.
非常棒。没有传感装置,所有的控制组件都装在这个谐调的腿中了。
71.Really simple, but beautiful.
很简单,但非常棒。
72.Now, you might have noticed something else about the animals when they were running over the rough terrain.
现在,你可能要关注这些动物的其他方面了, 当它们跑过崎岖不平的地表面时。
73.And my assistant’s going to help me here.
我的助手要帮我一下。
74.When you touched the cockroach leg — can you get the microphone for him?
当你摸蟑螂的腿时——你能帮我把话筒递给他吗?
75.When you touched the cockroach leg, what did it feel like?
当你摸蟑螂的腿时,有什么感觉?
76.Did you notice something?
感觉到什么不同了吗?
77.Boy: Spiny.
男孩:很多刺。
78.Robert Full: It’s spiny, right? It’s really spiny, isn’t it? It sort of hurts.
罗伯特?福尔:很多刺,是吗?感觉很扎,对不对?有点疼。
79.Maybe we could give it to our curator and see if he’d be brave enough to touch the cockroach.
也许我们应该把蟑螂给监护人,看他有没有勇气也摸一摸。
80.(Laughter) Chris Anderson: Did you touch it?
(笑) 克里斯?安德森:你摸过吗?
81.RF: So if you look carefully at this, what you see is that they have spines and until a few weeks ago, no one knew what they did.
罗伯特?福尔:所以当你很仔细的观察,会发现上面真的有很多刺。 直到几周前,一直也没人知道这些刺是用来做什么的。
82.They assumed that they were for protection and for sensory structures.
他们推测那些刺起到保护作用,是用来感知周围结构用的。
83.We found that they’re for something else — here’s a segment of that spine.
后来我们发现它们有别的功效——这里是一根刺的一部分
84.They’re tuned such that they easily collapse in one direction to pull the leg out from debris, but they’re stiff in the other direction so they capture disparities in the surface.
它们的构造使得它们都很容易向一个方向倒 把一条腿从碎片中拔出, 这些毛很硬,不会弯向另一个方向,因此可以对付不同的表面。
85.Now crabs don’t miss footholds, because they normally move on sand — until they come to our lab.
螃蟹不需要寻找立足点,因为他们通常在沙子上行走—— 知道他们被请入我们的实验室。
86.And where they have a problem with this kind of mesh, because they don’t have spines.
然后他们在这些网子上移动会遇到问题, 因为他们没有刚毛。
87.The crabs are missing spines, so they have a problem in this kind of rough terrain.
螃蟹由于没有刚毛,所以在这些不平整的表面上移动会显得不自在。
88.But of course, we can deal with that, because we can produce artificial spines.
但当然,我们能帮助它们, 因为我们可以制造人工刚毛。
89.We can make spines that catch on simulated debris and collapse on removal to easily pull them out.
我们可以制造能够应付仿制碎片的刚毛 而且在我们不需要它们时还能很容易的拔出。
90.We did that by putting these artificial spines on crabs, as you see here, and then we tested them.
我们把这些人工的刚毛装在螃蟹腿上, 你看,我们测试一下。
91.Do we really understand that principle of tuning? The answer is, yes!
我们真正明白调谐的原理了吗?答案是:对!
92.This is slowed down 20-fold, and the crab just zooms across that simulated debris.
这是放慢20倍后的,螃蟹飞速的横穿过这个模拟碎片。
93.(Laughter) (Applause) A little better than nature.
(笑声)(掌声) 比自然形成的稍微好一些。
94.So to our blueprint, we need to add tuned spines.
所以在我们的蓝图上,要加上具有调谐作用的刺。
95.Now will this help us think about the design of more effective climbing robots?
这些可以帮助我们设计出更会爬墙的机器人吗?
96.Well, here’s RHex — RHex has trouble on rails — on smooth rails, as you see here.
这里是RHex——RHex穿过轨道时遇到了麻烦——在平滑的轨道上,你看。
97.So why not add a spine? My colleagues did this at U Penn.
为什么不加一个刺呢?我的同事帮他加上了。
98.Dan Koditschek put some steel nails — very simple version — on the robot — and here’s RHex, now, going over those steel — those rails. No problem!
丹?柯蒂斯将一些钢钉——非常简单的型号——装在机器人上—— 于是现在的RHex,越过那些钢制的——轨道。没有问题!
99.How does it do it?
它是怎么做到的?
100.Let’s slow it down and you can see the spines in action.
我们放慢速度,你就能看到那些刺是如何工作的了。
101.Watch the leg come around, and you’ll see it grab on right there.
看腿移动过来了,你看它刚好能抓稳。
102.It couldn’t do that before, it would just slip and get stuck and tip over.
以前它是办不到的,只会打滑、卡主然后翻倒。
103.And watch again, right there — successful.
现在再看一遍,就这样——成功。
104.Now just because we have a distributed foot and spines doesn’t mean you can climb vertical surfaces.
现在只拥有有均匀分布的足以及刺 并不代表可以爬上垂直的表面。
105.This is really, really difficult.
这个真的非常,非常难。
106.But look at this animal do it!
但看动物们很多都会!
107.One of the ones I’m passing around is climbing up this vertical surface that’s a smooth metal plate.
有这样一个动物是在光滑的金属盘子表面向上爬。
108.It’s extraordinary how fast it can do it — but if you slow it down, you see something that’s quite extraordinary.
它们的爬行速度快得惊人—— 看如果放慢速度,你会发现一些很神奇的事。
109.It’s a secret. The animal effectively climbs by slipping and look — and doing, actually, terribly, with respect to grabbing on the surface.
这是个秘密。动物很有效的利用滑动,看—— 事实上,很恐怖的是,它们在抓取表面。
110.It looks, in fact, like it’s swimming up the surface.
看上去像从表面上游了上去。
111.We can actually model that behavior better as a fluid, if you look at it.
我们其实可以将这一行为模仿为流动体的,如果你仔细观察。
112.The distributed foot, actually, is working more like a paddle.
这些分布式足事实上工作原理更像是桨。
113.The same is true when we looked at this lizard running on fluidized sand.
当我观察蜥蜴在流态化的沙子上移动时,结果相同。
114.Watch its feet.
看它的脚。
115.It’s actually functioning as a paddle even though it’s interacting with a surface that we normally think of as a solid.
事实上它起到了桨的作用。 即使它接触的表面通常被我们认为是固体。
116.This is not different from what my former undergraduate discovered when she figured out how lizards can run on water itself.
这与我以前的一个本科生学生所发现的没有什么不同 当她发现蜥蜴是如何在水面上行走的。
117.Can you use this to make a better robot?
可以利用这个制造更好的机器人吗?
118.Martin Buehler did — who’s now at Boston Dynamics — he took this idea and made RHex to be Aqua RHex.
马丁?比埃勒进行了尝试——他现在在波士顿动力公司—— 他采用了这个点子并将RHex改造为Aqua RHex。
119.So here’s RHex with paddles, now converted into an incredibly maneuverable swimming robot.
所以RHex有了蹚水的桨, 现在被改造为不可思议且操纵灵活的游泳机器人了。
120.For rough surfaces, though, animals add claws.
然而对于粗糙的表面,动物为自己添加了爪子。
121.And you probably feel them if you grabbed it.
当你抓住它们时应该能感觉到这些爪子。
122.Did you touch it?
你有没有碰碰它?
123.CA: I did.
CA:我碰了。
124.RF: And they do really well at grabbing onto surfaces with these claws.
RF:它们可以很有效的利用这些爪子钳住表面。
125.Mark Cutkosky at Stanford University, one of my collaborators, is an extraordinary engineer who developed this technique called Shape Deposition Manufacturing,
斯坦福大学的马克?库特科斯基,我的一位同事,是一位杰出的工程师 他发明了一种技术叫做“形状沉积制造”,
126.where he can imbed claws right into an artificial foot.
利用这种技术,他可以将爪子嵌入人工足中。
127.And here’s the simple version of a foot for a new robot that I’ll show you in a bit.
这里有一个新机器人脚的简易版本。
128.So to our blueprint, let’s attach claws.
在我们的蓝图上加上爪子。
129.Now if we look at animals, though, to be really maneuverable in all surfaces, the animals use hybrid mechanisms that include claws, and spines, and hairs, and pads, and glue, and capillary adhesion
现在让我们看看那些真正能在任何表面上移动的动物, 它们都要用到混合动力机制 包括爪子、刺、毛发、肉趾、胶、毛细管粘附
130.and a whole bunch of other things.
还有很多其他的东西。
131.These are all from different insects.
这些都是来自不同的昆虫。
132.There’s an ant crawling up a vertical surface.
这里有一只蚂蚁在垂直的表面上往上爬。
133.Let’s look at that ant.
让我们来观察一下这只蚂蚁。
134.This is the foot of an ant. You see the hairs and the claws and this thing here.
这是蚂蚁的一只脚。你看这里有毛发以及爪子。
135.This is when its foot is is in the air.
这是蚂蚁自然状态下的脚。
136.Watch what happens when the foot goes onto your sandwich.
观察这脚放在你的三明治上会发生些什么。
137.You see what happens?
看到发生了些什么了吗?
138.That pad comes out. And that’s where the glue is.
这些垫伸展出来。这就是胶所在的地方。
139.Here from underneath is an ant foot, and when the claws don’t dig in, that pad automatically comes out without the ant doing anything.
这下面是一只蚂蚁脚。 当爪子不深入抓取时,垫会自动出来,不需要蚂蚁做任何事情。
140.It just extrudes.
它就自己被挤压了出来。
141.And this was a hard shot to get — I think this is the shot of the ant foot on the superstrings.
很难拍摄到这种状态——这大概是在超弦状态下拍摄的蚂蚁脚。
142.So it’s pretty tough to do.
真的很难办到。
143.This is what it looks like close up — here’s the ant foot, and there’s the glue.
这就是近看的效果—— 这是一只蚂蚁脚,然后这里是胶状物。
144.And we discovered this glue may be an interesting two-phase mixture.
而且我们发现这些胶状物可能是两种物质的混合物。
145.It certainly helps it to hold on.
这显然可以帮助我们抓住墙壁。
146.So to our blueprint, we stick on some sticky pads.
所以要在我们的蓝图上添加粘胶垫。
147.Now you might think for smooth surfaces we get inspiration here.
现在你可以考虑光滑表面了,因为我们已经有了相应的灵感。
148.Now we have something better here.
在这里我们有些更好的。
149.The gecko’s a really great example of nanotechnology in nature.
壁虎绝对是自然界中最好的纳米技术例子。
150.These are its feet.
这些是他的脚。
151.They’re — almost look alien. And the secret, which they stick on with, involves their hairy toes.
他们看起来——甚至像外星人的脚。而且秘密在于 他们有毛茸茸的脚趾头。
152.They can run up a surface at a meter per second, take 30 steps in that one second — you can hardly see them.
它们可以以1米/秒的速度在表面上移动。 一秒钟内走30步——你几乎都看不到它们。
153.If we slow it down, they attach their feet at eight milliseconds, and detach them in 16 milliseconds.
但如果我们将这一过程放慢,会发现它们的脚与表面接触时间仅为8毫秒, 而脚离开表面的时间仅为16毫秒。
154.And when you watch how they detach it, it is bizarre.
当你观察它们是如何将脚与表面分开时,会感觉很奇怪。
155.They peel away from the surface like you’d peel away a piece of tape.
他们把脚从表面撕开,就像你把胶带撕开一样。
156.Very strange. How do they stick?
很奇怪。他们是怎么粘上的?
157.If you look at their feet, they have leaf-like structures called linalae with millions of hairs.
观察他们的脚,你会发现这种叶状结构叫做linalae, 并且有成千上万的毛发。
158.And each hair has the worst case of split ends possible.
而且每根毛都分叉极为严重。
159.It has a hundred to a thousand split ends, and that’s the secret, because it allows intimate contact.
又分了成百上千个叉。 这就是秘密,因为这样可以更为亲密的接触物体表面。
160.The gecko has a billion of these 200-nanometer-sized split ends.
壁虎拥有10亿个这样200纳米大小的分叉。
161.And they don’t stick by glue, or they don’t work like velcro, or they don’t work with suction.
它们不利用胶状物,不用尼龙搭扣,也不用吸附力。
162.We discovered they work by intermolecular forces alone.
我们发现它们只用分子间引力作用。
163.So to our blueprint, we split some hairs.
所以在我们的蓝图上,我们将一些毛发分叉。
164.This has inspired the design of the first self-cleaning dry adhesive — the patent issued, we’re happy to say.
这也为第一个具有自我清洁能力的胶提供了设计灵感—— 而且这一项目也申请了专利,我们很开心的宣布。
165.And here’s the simplest version in nature, and here’s my collaborator Ron Fearing’s attempt at an artificial version of this dry adhesive made from polyurethane.
这里是自然界中最简单的版本。 我的同事罗恩?菲尔凌试图 利用聚氨酯制造这种人工干胶。
166.And here’s the first attempt to have it work on some load.
这是第一次试验将其粘在同样的表面上。
167.There’s enormous interest in this in a variety of different fields.
在很多领域里,人们都对其非常感兴趣。
168.You could think of a thousand possible uses, I’m sure.
我敢保证你能想出上千种用途。
169.Lots of people have, and we’re excited about realizing this as a product.
很多人发现了这是一种产品,我们对此也很激动。
170.We have imagined products, for example, this one: we imagined a bio-inspired Band-Aid, where we took the glue off the Band-Aid.
我们曾经想象过要制造这样的产品,比如: 由生物启发的创可贴,这样我们可以不用在创可贴上用粘胶。
171.We took some hairs from a molting gecko; put three rolls of them on here, and then made this Band-Aid.
我们在蜕皮的壁虎身上取得一些毛发; 将三卷毛发用在此处,制造出新的创可贴。
172.This is an undergraduate volunteer — we have 30,000 undergraduates so we can choose among them — that’s actually just a red pen mark.
这是一位本科生志愿者—— 我们有三万个本科生,所以可以从他们之中挑选—— 这仅仅是个红色笔印。
173.But it makes an incredible Band-Aid.
但这方法真的制造出了不可思议的创可贴。
174.It’s aerated, it can be peeled off easily, it doesn’t cause any irritation, it works underwater.
其中添注了二氧化碳,可以被轻易地揭掉,不会带来小困扰,而且还具有防水功能。
175.I think this is an extraordinary example of how curiosity-based research — we just wondered how they climbed up something — can lead to things that you could never imagine.
这是一个很好的例子,来说明有好奇心而且启发的研究—— 我们只是好奇它们如何爬上一些表面的—— 可以引领你发现一些想不到的事情。
176.It’s just an example of why we need to support curiosity-based research.
这是一个例子来说明为什么我们需要支持那些由好奇心启发的研究。
177.Here you are, pulling off the Band-Aid.
现在你撕掉创可贴。
178.So we’ve redefined, now, what a foot is.
所以现在我们对脚重新进行了定义。
179.The question is, can we use these secrets, then, to inspire the design of a better foot, better than one we see in nature?
问题是,我们可否用这些秘密 来启发我们设计出比自然形成的更好的脚吗?
180.Here’s the new project: we’re trying to create the first climbing search-and-rescue robot — no suction or magnets — that can only move on limited kinds of surfaces.
这里有一个新的项目: 我们试图制造第一个可爬墙的搜索救援机器人——不用吸盘以及磁铁—— 可以在特定的表面上移动。
181.I call the new robot RiSE, for “Robot in Scansorial Environment” — that’s a climbing environment — and we have an extraordinary team of biologists and engineers creating this robot.
我称这个新机器人为RiSE, 是“攀登环境机器人”的简称——它可以爬墙。 我们共同制造这个机器人的小组中有杰出的生物学家以及工程师。
182.And here is RiSE.
这就是RiSE。
183.It’s six-legged and has a tail. Here it is on a fence and a tree.
它有6条腿和一条尾巴。这是它在一个篱笆上,还有在一颗树上。
184.And here are RiSE’s first steps on an incline.
这是RiSE在倾斜的表面走出的第一步。
185.You have the audio? You can hear it go up.
你们有耳机吧?可以听到它往上走。
186.And here it is coming up at you, in its first steps up a wall.
它在向你走来,第一次爬墙。
187.Now it’s only using its simplest feet here, so this is very new.
这里它仅仅用最简单的脚,所以很新。
188.But we think we got the dynamics right of the robot.
但是我想我们已经理解了这个机器人的动力装置。
189.Mark Cutkosky, though, is taking it a step further.
马克?库特科斯基将这个实验更进一步。
190.He’s the one able to build this shape-deposition manufactured feet and toes.
他可以利用形状沉积制造的技术来制造这些脚以及趾头。
191.The next step is to make compliant toes, and try to add spines and claws and set it for dry adhesives.
下一步是要制造顺从听话的脚趾头。 然后加上刺和爪子,再加上干胶。
192.So the idea is to first get the toes and a foot right, attempt to make that climb, and ultimately put it on the robot.
我们计划首先将脚趾和脚做好, 然后试图让脚能在墙上爬行,最后在其上面安装机器人。
193.And that’s exactly what he’s done.
他就是这么做的。
194.He’s built, in fact, a climbing foot-bot inspired by nature.
事实上,他制造出一个受自然启发的脚踏式爬墙机器人。
195.And here’s Cutkosky’s and his amazing students’ design.
这就是特科斯基以及他令人佩服的学生的设计作品。
196.So these are tuned toes — there are six of them, and they use the principles that I just talked about collectively for the blueprint.
这些就是调谐的脚趾——有6个, 它们就将我刚才在蓝图上用到的原理综合起来。
197.So this is not using any suction, any glue, and it will ultimately, when it’s attached to the robot — it’s as biologically inspired as the animal —
没有用到吸盘,或任何胶状物, 最终,当它被装到机器人身上后—— 由动物启发而来——
198.hopefully be able to climb any kind of a surface.
希望能在任何表面上爬行。
199.Here you see it, next, going up the side of a building at Stanford.
现在你看,接下来,它爬上斯坦福大学建筑的一面墙。
200.It’s sped up — again, it’s a foot climbing.
它加速了——它一直是用脚爬行。
201.It’s not the whole robot yet, we’re working on it — now you can see how it’s attaching.
这还不是全部的机器人,我们仍在继续努力—— 现在你可以看到它是怎么爬上去的。
202.These tuned structures allow the spines, friction pads and ultimately the adhesive hairs to grab on to very challenging, difficult surfaces.
这些调谐的结构使得所有刺、摩擦垫以及最终的黏贴式毛发 可以抓附住这些非常具有挑战性的表面。
203.And so they were able to get this thing — this is now sped up 20 times — can you imagine it trying to go up and rescue somebody at that upper floor? OK?
所以它们现在可以爬墙了——这个机器人加速了20倍—— 你能想象它爬上去救在上层的人吗?
204.You can visualize this now, it’s not impossible.
你完全可以这么设想了,不是不可能。
205.It’s a very challenging task. But more to come later.
这是一项非常具有挑战性的工作。但我们还有很多要做。
206.To finish: we’ve gotten design secrets from nature by looking at how feet are built.
结束之际,我想说我们从自然中汲取设计灵感,当我们观察脚是如何构造时。
207.We’ve learned we should distribute control to smart parts.
我们学到应该把能力分配到重要的地方。
208.Don’t put it all in the brain, but put some of the control in tuned feet, legs and even body.
别把想法都只放在脑子里, 而是去琢磨琢磨调谐的足,腿甚至身体。
209.That nature uses hybrid solutions, not a single solution, to these problems, and they’re integrated and beautifully robust.
自然界为解决这类问题都使用多种途径,绝不是单一途径, 这些途径都完美的结合在一起,而且十分有效。
210.And third, we believe strongly that we do not want to mimic nature but instead be inspired by biology, and use these novel principles with the best engineering solutions that are out there
第三,我们坚定的相信我们不要单纯模仿自然,而是要从生物中汲取灵感, 然后利用这些新的原理以及最好的工程解决方案
211.to make — potentially — something better than nature.
来制造——有可能——比自然更好的东西。
212.So there’s a clear message: whether you care about a fundamental, basic research of really interesting, bizarre, wonderful animals,
所以信息明确: 你很在意最基础的研究 关于那些有趣、奇怪而奇妙的动物,
213.or you want to build a search-and-rescue robot that can help you in an earthquake, or to save someone in a fire, or you care about medicine, we must preserve nature’s designs.
或者你想制造一个可以用来搜寻以及营救的机器人 来帮助你在地震或火灾中救人 再或你对医药很感兴趣,总之我们必须保留大自然的设计方案。
214.Otherwise these secrets will be lost forever.
否则这些秘密就将永远被丢失了。
215.Thank you.
谢谢。
暂无讨论,说说你的看法吧