MurrayGellMann_物理中的美与真【中英文对照】

1.Thank you for putting up these pictures of my colleagues over here.
非常感谢把我同事的这些照片挂在这儿。
2.(Laughter). We’ll be talking about them.
(众笑)我们待会就会谈到他们
3.Now, I’m going try an experiment. I don’t do experiments, normally. I’m a theorist.
现在我来做个实验。我平常不做实验,只搞理论研究。
4.But I’m going see what happens if I press this button.
来看看我按下这按钮会怎样。
5.Sure enough. OK. I used to work in this field of elementary particles.
好吧。我过去的科研方向是基本粒子。
6.What happens to matter if you chop it up very fine?
如果你把它再分下去会怎样呢?
7.What is it made of?
它是由什么组成的呢?
8.And the laws of these particles are valid throughout the universe, and they’re very much connected with the history of the universe.
宇宙中这些基本粒子所遵循的物理规律都是一致的, 它们和宇宙的历史息息相关。
9.We know a lot about four forces. There must be a lot more, but those are at very, very small distances, and we haven’t really interacted with them very much yet.
对基本粒子的四种作用力我们已经相当了解,但未知的部分肯定更多。 但对极其微小尺度的物质 我们还所知甚少。
10.The main thing I want to talk about is this: that we have this remarkable experience in this field of fundamental physics that beauty is a very successful criterion for choosing the right theory.
我最想说的就是 在基础物理领域我们有这个显著的经验: 美是我们在判断理论正确与否时的一条十分有用的标准
11.And why on earth could that be so?
但原因何在呢?
12.Well, here’s an example from my own experience.
先让我讲一个我自己的经历吧。
13.It’s fairly dramatic, actually, to have this happen.
它非常有戏剧性。
14.Three or four of us, in 1957, put forward a partially complete theory of one of these forces, this weak force.
在1957年,我们三四位同僚一起 提出了一个还算完整的弱相互作用理论。
15.And it was in disagreement with seven — seven, count them, seven experiments.
这理论和当时7个实验结果都不吻合–足足七个,大家想想看!
16.Experiments were all wrong.
后来知道那些实验都是错的。
17.And we published before knowing that, because we figured it was so beautiful, it’s gotta be right!
虽然我们当时并不知道后来知道那些实验都是错的,我们还是出版了我们的理论。 因为我们认为这个理论太美了,它必定是对的。
18.The experiments had to be wrong, and they were.
那些那些实验必须是错的,它们的确也是错的。
19.Now our friend over there, Albert Einstein, used to pay very little attention when people said, “You know, there’s a man with an experiment that seems to disagree with special relativity.
我们的朋友爱因斯坦,他在那儿 听到别人说D.C.米勒的实验结果与他的狭义相对论不符时 他完全不放在心上,
20.DC Miller. What about that?” And he would say, “Aw, that’ll go away.” (Laughter).
他会说:“哦,那实验肯定是错的!” (众笑)
21.Now, why does stuff like that work? That’s the question.
为什么事情是这样的呢?这是个问题。
22.Now, yeah, what do we mean by beautiful? That’s one thing.
物理学中的美到底是什么呢?这是一方面。
23.I’ll try to make that clear — partially clear.
我会尽量说清楚究竟什么是物理中的美。
24.Why should it work, and is this something to do with human beings?
为什么它在物理中有很大作用,以及这是不是和人类自身有关呢?
25.I’ll let you in on the answer to the last one that I offer, and that is, it has nothing to do with human beings.
我先回答最后一个问题 这和人类一点关系都没有。
26.Somewhere in some other planet, orbiting some very distant star, maybe in a another galaxy, there could well be entities that are at least as intelligent as we are,
假设在遥远的星系的一颗行星上 也许在另一个银河系 存在着至少和我们一样聪明的智慧生物
27.and are interested in science. It’s not impossible; I think there probably are lots.
他们同样对科学感兴趣。这并不是不可能的。我想也许存在很多这样的星球。
28.Very likely, none is close enough to interact with us.
但它们十分有可能离我们太遥远了,以至于无法和我们交流。
29.But they could be out there, very easily.
但很大可能,他们的确存在。
30.And suppose they have, you know, very different sensory apparatus, and so on.
假设他们拥有和我们不同的感觉器官,比方说
31.They have seven tentacles, and they have 14 little funny-looking compound eyes, and a brain shaped like a pretzel.
他们有7只触手,14个可笑的小复眼 和一个形似蝴蝶结的大脑。
32.Would they really have different laws?
他们会有不同的物理规律吗?
33.There are lots of people who believe that, and I think it is utter baloney.
很多人坚信有,可我认为这纯属胡扯。
34.I think there are laws out there, and we of course don’t understand them at any given time very well — but we try. And we try to get closer and closer.
我想那里存在一些物理规律 尽管我们也还不能透彻了解全部的规律 但我们会努力去了解它们。我们努力去接近它们。
35.And someday, we may actually figure out the fundamental unified theory of the particles and forces, what I call the “fundamental law.”
也许终有一天,我们会找出宇宙中,关于粒子和力 基本又统一的定律,我管它叫“基本定律”
36.We may not even be terribly far from it.
也许现在我们离发现这个定律也并非那么遥远。
37.But even if we don’t run across it in our lifetimes, we can still think there is one out there, and we’re just trying to get closer and closer to it.
即便在有生之年我们看不到这一天 我们仍然可以坚信它的存在 我们所做的就是不断接近它。
38.I think that’s the main point to be made.
PPT上是我接下来要阐述的观点(以数学简洁表达出来的理论,就是美和优雅的。)
39.We express these things mathematically.
我们用数学描述理论
40.And when the mathematics is very simple — when in terms of some mathematical notation, you can write the theory in a very brief space, without a lot of complication —
而数学是简明的 就一些数学符号而言 你可以把一个理论简洁的表示出来,一点也不复杂
41.that’s essentially what we mean by beauty or elegance.
这种理论就是美丽和优雅的
42.Here’s what I was saying about the laws. They’re really there.
这也就是我说“基本定律”,他们的确是存在的。
43.Newton certainly believed that.
牛顿肯定也持这一观点。
44.And he said, here, “It is the business of natural philosophy to find out those laws.”
他说:“自然哲学(在牛顿时代,自然哲学=科学)的目标就是发现自然界的基本规律。”
45.The basic law, let’s say — here’s an assumption.
这里有一个关于基本定律的假设
46.The assumption is that the basic law really takes the form of a unified theory of all the particles.
基本定律是 关于所有粒子的一种统一理论。
47.Now, some people call that a theory of everything.
有些人称其为“万有理论”
48.That’s wrong, because the theory is quantum mechanical.
那不对,因为那个理论是关于量子力学的。
49.And I won’t go into a lot of stuff about quantum mechanics and what it’s like, and so on.
我不会讲一些关于量子力学的知识,比如什么是量子力学之类。
50.You’ve heard a lot of wrong things about it anyway. (Laughter).
你们一定听说过很多关于量子力学的错误说法。(众笑)
51.There are even movies about it with a lot of wrong stuff.
甚至还有几部与之相关的电影,里面也是错误百出。
52.But the main thing here is that it predicts probabilities.
但最主要的是量子力学能预测可能性。
53.Now, sometimes those probabilities are near certainties.
有时它的预测是接近正确的
54.And in a lot of familiar cases, they of course are.
在很多常见的情况下,他们一定如此
55.But other times they’re not, and you have only probabilities for different outcomes.
但在其他时候则未必,你能获知的只是各种可能性而已。
56.So what that means is that the history of the universe is not determined just by the fundamental law.
因此,这说明决定宇宙的历史不仅仅有基本定律。
57.It’s the fundamental law and this incredibly long series of accidents, or chance outcomes, that are there in addition.
它们应包括基本定律和不确定性, 还有偶发事件
58.And the fundamental theory doesn’t include those chance outcomes; they are in addition.
而基本定律可不包括这些结果,他们是额外附加的。
59.So it’s not a theory of everything. And in fact, a huge amount of the information in the universe around us comes from those accidents,
所以基本定律不是万有理论。事实上,我们周围宇宙中 大量的信息从这些不确定性而来,
60.and not just from the fundamental laws.
而并非来自基本定律。
61.Now, it’s often said that getting closer and closer to the fundamental laws by examining phenomena at low energies, and then higher energies,
现在人们总是说,通过以下方法来接近基本定律 先是在低能量下,然后是高能量下观察现象
62.and then higher energies, or short distances, and then shorter distances, and then still shorter distances, and so on, is like peeling the skin of an onion.
接着是更高能量,小尺度,更小的尺度 再小的尺度,就像 剥洋葱皮一样。
63.And we keep doing that, and build more powerful machines, accelerators for particles.
我们的确一直这么做。 建造更强的机器来加速粒子
64.We look deeper and deeper into the structure of particles, and in that way we get probably closer and closer to this fundamental law.
我们不断深入到粒子的更微小的结构当中, 这样我们可能会更接近基本定律。
65.Now, what happens is that as we do that, as we peel these skins of the onion, and we get closer and closer to the underlying law, we see that each skin has something in common with the previous one,
当我们剥下这些洋葱皮 从而接近下一层的定律时, 我们发现每一层洋葱皮和它前一层
66.and with the next one. We write them out mathematically, and we see they use very similar mathematics.
、后一层之间都存在共性。当我们用数学把它们表示出来时 我们发现他们使用的数学是相似的。
67.They require very similar mathematics.
他们需要十分相似的数学。
68.That is absolutely remarkable, and that is a central feature of what I’m trying to say today.
那绝对是惊人的发现, 那也正是我今天最想说的。
69.Newton called it — that’s Newton, by the way — that one.
牛顿称它为…,顺便说一下那就是牛顿
70.This one is Albert Einstein. Hi, Al! And anyway, he said, “nature conformable to herself” — personifying nature as a female.
这是爱因斯坦。你好,小爱。无论怎样, 他说:”大自然是自适应的。”(并赋予自然以女性的形象)
71.And so what happens is that the new phenomena, the new skins, the inner skins of the slightly smaller skins of the onion that we get to, resemble the slightly larger ones.
这个新现象 新的”洋葱皮”,洋葱内小的那层 当我们接近它时,它就像大的那些层。
72.And the kind of mathematics that we had for the previous skin is almost the same as what we need for the next skin.
关于之前一层“洋葱皮”的数学机制 和后面的一层几乎一样。
73.And that’s why the equations look so simple.
这就是为什么这些方程看起来如此简单。
74.Because they use mathematics we already have.
因为它们使用的数学是我们已经熟知的。
75.A trivial example is this: Newton found the law of gravity, which goes like one over the square of the distance between the things gravitated.
这有一个小例子:牛顿发现了万有引力定律 万有引力的大小与物体间距离的平方成正比
76.Coulomb, in France, found the same law for electric charges.
法国的库伦发现电荷间的作用也遵循同样的规律。
77.Here’s an example of this similarity.
这就是相似性的一个例子。
78.You look at gravity, you see a certain law.
当你看万有引力时,你会看到一定的定律。
79.Then you look at electricity. Sure enough. The same rule.
而当你看电荷间的作用时,你将会发现相同的规律。
80.It’s a very simple example.
这是一个非常简单的例子。
81.There are lots of more sophisticated examples.
还有更多复杂的例子。
82.Symmetry is very important in this discussion.
对称性在这里是非常重要的。
83.You know what it means. A circle, for example, is symmetric under rotations about the center of the circle.
你们对此一定很了解。举个例子来说,一个圆 绕中心旋转是对称的。
84.You rotate around the center of the circle, the circle remains unchanged.
你绕圆心旋转,圆会保持不变。
85.You take a sphere, in three dimensions, you rotate around the center of the sphere, and all those rotations leave the sphere alone.
当你绕着一个三维的球旋转时 所有这些旋转都不会使球发生变化
86.They are symmetries of the sphere.
它们就是球的对称性。
87.So we say, in general, that there’s a symmetry under certain operations if those operations leave the phenomenon, or its description, unchanged.
所以大体上来说, 如果一个物体或一种现象经过某种操作后能够保持不变, 那么它就具有对称性。
88.Maxwell’s equations are of course symmetrical under rotations of all of space.
麦克斯韦方程就具有这种对称性, 在空间旋转的条件下。
89.Doesn’t matter if we turn the whole of space around by some angle, it doesn’t leave the — doesn’t change the phenomenon of electricity or magnetism.
无论我们把空间旋转怎样一个角度, 电和磁的显现都不会改变。  电和磁的显现都不会改变。  它都不会改变电磁现象。
90.There’s a new notation in the 19th century that expressed this, and if you use that notation, the equations get a lot simpler.
19世纪出现了一种新的符号法则来表达麦克斯韦方程, 如果你使用那套符号,麦克斯韦方程组会变得更加简洁。
91.Then Einstein, with his special theory of relativity, looked at a whole set of symmetries of Maxwell’s equations, which are called special relativity.
爱因斯坦的狭义相对论 关注的是麦克斯韦方程体系的整体对称性。 这被称之为狭义相对论
92.And those symmetries, then, make the equations even shorter, and even prettier, therefore.
这些对称使得麦克斯韦方程组更简洁,更加漂亮。
93.Let’s look. You don’t have to know what these things mean, doesn’t make any difference.
让我们看看幻灯片。你们并不用知道这些公式具体的含义是什么,这没什么大影响,
94.But you can just look at the form. (Laughter). You can look at the form.
你只需看它们的形式就行啦(众笑)。让我们看一下它的形式。
95.You see above, at the top, a long list of equations with three components for the three directions of space: x, y and z.
你们可以看到,在上方,很长的一列 这是一系列具有xyz三个空间分量的方程组。
96.Then, using vector analysis, you use rotational symmetry, and you get this next set.
用矢量分析,利用对称性,你们会看到接下来这种形势。
97.Then you use the symmetry of special relativity and you get an even simpler set down here, showing that symmetry exhibits better and better.
当你使用狭义相对论的对称形式时,你就会得到一种更加简洁的形式。 它显示对称性越来越好
98.The more and more symmetry you have, the better you exhibit the simplicity and elegance of the theory.
越是对称,你的理论就会呈现出更加简洁和优雅的形式。
99.The last two, the first equation says that electric charges and currents give rise to all the electric and magnetic fields.
我们来看最后两个方程,第一个方程说明 电荷和电流是怎样产生电场和磁场的,
100.The next — second — equation says that there is no magnetism other than that.
接下来的一个方程说明除了磁场之外没有别的东西了。
101.The only magnetism comes from electric charges and currents.
磁场唯一的来源就是电荷和电流。
102.Someday we may find some slight hole in that argument.
也许有一天我们会发现这些理论中的小小不足
103.But for the moment, that’s the case.
但就现在看来,这种理论还是正确的。
104.Now, here is a very exciting development that many people have not heard of.
现在有一个很多人都没有听说过的令人兴奋的发展。
105.They should have heard of it, but it’s a little tricky to explain in technical detail, so I won’t do it. I’ll just mention it. (Laughter).
他们应当听说过它,但是把它解释清楚需要一些技巧, 所以我不准备这么做了。我就是稍微提一下。
106.But Chen Ning Yang, called by us “Frank” Yang — (Laughter) — and Bob Mills put forward, 50 years ago, this generalization of Maxwell’s equations, with a new symmetry.
杨振宁,我们叫他 夫兰克 杨 和罗伯特-米尔斯,在50年前提出的 这种对麦克斯韦方程组的概括有全新的对称性。
107.A whole new symmetry.
一种全新的对称。
108.Mathematics very similar, but there was a whole new symmetry.
在数学上很相似,但这是一种全新的对称。
109.They hoped that this would contribute somehow to particle physics — didn’t. It didn’t, by itself, contribute to particle physics.
他们希望这会对粒子物理有某种帮助。 然而它本身并没有对粒子物理有帮助。
110.But then some of us generalized it further. And then it did!
但是我们中的一些人把它更进一步的推广了。于是成功了。
111.And it gave a very beautiful description of the strong force and of the weak force.
它给出一种非常漂亮的方法来描述强相互作用和弱相互作用。
112.So here we say, again, what we said before: that each skin of the onion shows a similarity to the adjoining skins.
所以我们说,正如我之前所说的, 正如洋葱皮之间存在着联系一样,

ted演讲稿中英文对照

MishaGlenny_对全球犯罪网络的调查【中英文对照】

2024-3-28 10:58:06

ted演讲稿中英文对照

NancyEtcoff_奇妙的幸福科学【中英文对照】

2024-3-28 11:00:15

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索