CraigVenter_即将实现人造生命【中英文对照】

1.You know, I’ve talked about some of these projects before, about the human genome and what that might mean, and discovering new sets of genes.
在这之前我已经讨论过这些项目中的一部分 关于人类基因组和它们的意义。 以及发现新的基因组。
2.We’re actually starting at a new point: we’ve been digitizing biology, and now we’re trying to go from that digital code into a new phase of biology,
这次我们要从一个新的角度来看: 我们在从事数字化生物学的工作。 并且现在我们正尝试从那些数字代码走向 一个生物学的全新阶段,
3.with designing and synthesizing life.
设计与人工合成生命。
4.So, we’ve always been trying to ask big questions.
我们经常试图提出一些较大的问题。
5.”What is life?” is something that I think many biologists have been trying to understand at various levels.
“生命是什么”我想是许多生物学家 不断地尝试在 在不同层面去理解的问题。
6.We’ve tried various approaches, paring it down to minimal components.
我们尝试了许多方法, 把它分解到最小的组成部分。
7.We’ve been digitizing it now for almost 20 years.
到目前我们几乎已经用了20年来将其数字化。
8.When we sequenced the human genome, it was going from the analog world of biology into the digital world of the computer.
当我们在排序人类基因组的时候, 它从生物学的模拟分析世界 走进了计算机的数字世界。
9.Now we’re trying to ask, can we regenerate life, or can we create new life, out of this digital universe?
现在我们在尝试提问,我们是否能够再造生命, 或者我们是否从这个数字世界中 能创造新的生命?
10.This is the map of a small organism, Mycoplasma genitalium, that has the smallest genome for a species that can self-replicate in the laboratory.
这是一种微生物的基因序列图, 生殖支原体, 它有着对于一个物种来说最小的基因组 能使其在实验室中自我复制。
11.And we’ve been trying to just see if we can come up with an even smaller genome.
并且我们在尝试了解是否 我们能找到一种更小的基因组。
12.We’re able to knock out on the order of a hundred genes out of the 500 or so that are here.
我们能够从500组基因中 分离出一百组就是我们眼前的这些。
13.But when we look at its metabolic map, it’s relatively simple compared to ours.
但当我们来看它的新陈代谢的时候, 这其实是相对简单的 相对我们的来说。
14.Trust me, this is simple.
相信我,这算简单的。
15.But when we look at all the genes that we can knock out one at a time, it’s very unlikely that this would yield a living cell.
但当我们在看所有这些 我们能一个一个分离出的基因组的时候, 很难相信它们能产生出 一个活生生的细胞。
16.So, we decided the only way forward was to actually synthesize this chromosome so we could vary the components to ask some of these most fundamental questions.
所以,我们认为唯一能继续研究的方法 就是人工合成这些染色体 以便我们能改变它的组成部分 来继续提问这些最基本的问题。
17.And so we started down the road of, “Can we synthesize a chromosome?”
于是我们开始沿着这条路走下去 “我们能人工合成染色体吗?”
18.Can chemistry permit making these really large molecules where we’ve never been before?
化学原则真的允许我们制造 这些我们从未实现过的 超大分子吗?
19.And, if we do, can we boot up a chromosome?
而且,就算我们可以,我们能激活它吗?
20.A chromosome, by the way, is just a piece of inert chemical material.
一对染色体,顺便说下,只是一些无活性的化学物质。
21.So, our pace of digitizing life has been increasing at an exponential pace.
我们数字化生命的速度不断地 以指数速度加快。
22.Our ability to write the genetic code has been moving pretty slowly, but has been increasing.
我们写基因编码的能力 进步地却非常慢, 不过也还是在增加的。
23.And our latest point would put it on now an exponential curve.
我们最近的状况将会把速度提升到指数曲线。
24.We started this over 15 years ago.
我们于15年前开始这项工作。
25.It took several stages, in fact, starting with a bioethical review before we did the first experiments.
实际上它经过了好几个阶段。 在我们做最初的试验前,先进行了一次生物伦理学的评估。
26.But it turns out synthesizing DNA is very difficult.
但结果是人工合成DNA 是非常困难的。
27.There’s tens of thousands of machines around the world that make small pieces of DNA, 30 to 50 letters in length, and it’s a degenerate process, so the longer you make the piece,
全世界有十几万台设备 在制造小片断的DNA, 长度在30到50个字符, 并且这是一个会倒退的过程,制造的片断越是长,
28.the more errors there are.
产生的错误就越是多。
29.So we had to create a new method for putting these little pieces together and correct all the errors.
所以我们不得不创造一种新的方法 把这些小的片断排放在一起并纠正所有的错误。
30.And this was our first attempt, starting with the digital information of the genome of Phi X 174.
这是我们的第一次尝试,从Phi X 174基因组(噬菌体) 的数字信息开始。
31.It’s a small virus that kills bacteria.
是一种能杀死细菌的小型病毒。
32.We designed the pieces, went through our error correction, and had a DNA molecule of about 5,000 letters.
我们设计了它的基因片断,经过了错误纠正, 就拥有了一条 5000字符长度的DNA。
33.The exciting phase came when we took this piece of inert chemical and put it in the bacteria, and the bacteria started to read this genetic code,
最另人兴奋的阶段是当我们把这段没有活性的化学物质 放进细菌内, 细菌开始读取基因编码,
34.made the viral particles.
制造了病毒粒子。
35.The viral particles then were released from the cells, then came back and killed the E. coli.
接着细胞释放出病毒粒子, 再返回来杀死了E.coli(革兰氏阴性菌)。
36.I was talking to the oil industry recently, and I said they clearly understood that model.
我最近与石油行业有一些交流, 我觉得他们对这个模式理解的非常透彻。
37.(Laughter) They laughed more than you guys are.
(笑声) 他比你们笑的大声多了。
38.And so we think this is a situation where the software can actually build its own hardware in a biological system.
因此我们认为这种情况实际上 是软件能在一个生物系统内 打造自己的硬件。
39.But we wanted to go much larger.
但我们还想再扩大规模。
40.We wanted to build the entire bacterial chromosome.
我们希望制造整条细菌染色体,
41.It’s over 580,000 letters of genetic code.
一条超过580,000字符长度的基因编码。
42.So we thought we’d build them in cassettes the size of the viruses, so we could actually vary the cassettes to understand what the actual components of a living cell are.
我们认为应该在以病毒大小的“盒”中制造它们 这样我们可以改变这些“盒” 来理解 一个活的细胞的实际组成部分是什么?
43.Design is critical, and if you’re starting with digital information in the computer, that digital information has to be really accurate.
设计是非常重要的, 并且如果你在计算机上开始使用数字信息。 那这些数字信息必须十分准确。
44.When we first sequenced this genome in 1995, the standard of accuracy was one error per 10,000 base pairs.
当我们在1995年第一次对这组基因排序时, 准确率的标准是每10000个基本对一个错误。
45.We actually found, on resequencing it, 30 errors. Had we used that original sequence, it never would have been able to be booted up.
实际上我们发现,在重新排序时, 平均是30个错误。如果我们使用原先的序列, 这组基因永远不可能被启动。
46.Part of the design is designing pieces that are 50 letters long that have to overlap with all the other 50-letter pieces to build smaller sub-units
设计工作的一部分是设计 50个字符长度的片断 并和其他的50字符长的片段叠加 以构建更小的次单元。
47.we have to design so they can go together.
我们要设计过他们才能聚到一起。
48.We design unique elements into this.
其中有我们设计过的独特部分。
49.You may have read that we put watermarks in.
你们可能听说过我们在其中加入了水印
50.Think of this: we have a four-letter genetic code: A, C, G and T.
想想看 基因编码有四个字符:A,C,G和T。
51.Triplets of that letter — those letters code for roughly 20 amino acids — that there’s a single letter designation for each of the amino acids.
这些字符的三联体 – 以及这些字符 编成了大约20种氨基酸 这样每个氨基酸就有了 一个字符标记
52.So we can use the genetic code to write out words, sentences, thoughts.
所以我们能使用基因编码来书写言语 句子,想法。
53.Initially, all we did was autograph it.
最初,我们所做的就是用它来签名。
54.Some people were disappointed there was not poetry.
有些人有点失望我们没用它来做首诗。
55.We designed these pieces so we can just chew back with enzymes.
我们设计了这些片断 并能使用酶来裁切。
56.There’s enzymes that repair them and put them together.
有些酶是用来修复他们并把他们放到一起的。
57.And we started making pieces, starting with pieces that were five to 7,000 letters, fit those together to make 24,000-letter pieces,
接着我们开始制造片断, 从7000字符长度的片断开始 把他们拼在一起制造24,000字符长度的片断
58.then put sets of those, going up to 72,000.
再把几组片断合并,变成了72,000长的片断
59.At each stage, we grew up these pieces in abundance so we could sequence them because we’re trying to create a process that’s extremely robust —
在每个阶段,我们大量培养了这些片断 因此我们可以给他们排序 因为我们希望创造一个异常可靠的过程
60.that you can see in a minute.
一分钟内你就将看见
61.We’re trying to get to the point of automation.
我们试着达到自动化的层面
62.So, this looks like a basketball playoff.
这看起来就像是一场篮球赛的对阵图
63.When we get into these really large pieces — over 100,000 base pairs — they won’t any longer grow readily in E. coli.
当这些非常大的片断超过 100,000基本对时 他们就很难继续在E.coil里长的更长了。
64.It exhausts all the modern tools of molecular biology.
在试尽了各种现代分子生物学的工具后
65.And so we turned to other mechanisms.
我们转向其他的途径。
66.We knew there’s a mechanism called homologous recombination, that biology uses to repair DNA, that can put pieces together.
我们知道有个方法叫同源重组, 生物学上用来修复DNA, 它能把片断组合到一起
67.Here’s an example of it.
这里有一个例子
68.There’s an organism called Deinococcus radiodurans that can take three millions rads of radiation.
有一种微生物叫 耐辐射球菌 能够承受三百万度的辐射量。
69.You can see in the top panel, its chromosome just gets blown apart.
你能看到在顶部的视图里,它的染色体四散在各个地方
70.12 to 24 hours later, it put it back together exactly as it was before.
12到24小时以后,它将自己 又组合回之前的原状。
71.We have thousands of organisms that can do this.
我们有数千种微生物有这种能耐
72.These organisms can be totally desiccated.
这些微生物能够完全脱离水。
73.They can live in a vacuum.
他们能存活在真空中
74.I am absolutely certain that life can exist in outer space, move around, find a new aqueous environment.
我完全确信外层空间存在着生命, 四处移动,遇到一个新的有水的环境
75.In fact, NASA has shown a lot of this is out there.
实际上,NASA已经展示过很多这样的例子。
76.Here’s an actual micrograph of the molecule we built using these processes — actually just using yeast mechanisms with the right design of the pieces we put them in.
这里有一组我们拍摄的这个分子的显微图像。 通过这些过程,其实就是前面所提到的酵母的方法 同时放入经过我们正确设计的片断。
77.Yeast puts them together automatically.
酵母自动地将他们聚合。
78.This is not an electron micrograph; this is just a regular photomicrograph.
这并不是电子显微图像; 它仅仅是普通的光学显微镜。
79.It’s such a large molecule we can see it with a light microscope.
这是如此之大的一个分子 我们能用一个光学显微镜观察它。
80.These are pictures over about a six-second period.
这些是时长约为六秒的图像。
81.So this is the publication we had just a short while ago.
这是我们所公开的最近的试验成果。
82.This is over 580,000 letters of genetic code.
这是超过580000字符长的基因编码。
83.It’s the largest molecule ever made by humans of a defined structure.
这也是由人类设定结构并制造的最大的分子。
84.It’s over 300 million molecular weight.
它超过了3亿分子重量。
85.If we printed out at a 10 font with no spacing, it takes 142 pages just to print this genetic code.
如果我们以10号字体不间隔地将其打印出来。 总共需要142页 来打印这些基因编码
86.Well, how do we boot up a chromosome? How do we activate this?
那我们该如何来启动一段染色体,我们该如何激活它?
87.Obviously, with a virus it’s pretty simple.
显然处理一个病毒非常简单
88.It’s much more complicated dealing with bacteria.
处理一个细菌就复杂多了
89.It’s also simpler when you go into eukaryotes like ourselves: you can just pop out the nucleus and pop in another one, and that’s what you’ve all heard about with cloning.
处理像我们自身这样的 真核生物也相对简单 你能取出一个细胞核 然后塞进另一个细胞中, 这就是大家听到的关于克隆的手法
90.With bacteria archaea, the chromosome is integrated into the cell, but we recently showed that we can do a complete transplant of a chromosome from one cell to another
对于古细菌,它们的染色体与整个细胞连成一体, 但最近我们也明确了我们能完成一个完整的移植 将染色体从一个细胞转移到另一个细胞中
91.and activate it.
并激活它。
92.We purified a chromosome from one microbial species.
我们从一个种群的微生物中提取出染色体。
93.Roughly, these two are as distant as human and mice.
基本上,这两个的差别就如同人类和老鼠般。
94.We added a few extra genes so we could select for this chromosome.
我们加上了一些新的基因 这样我们就能选择这些染色体。
95.We digested it with enzymes to kill all the proteins.
我们用酶来分解它们 去除所有的蛋白质
96.And it was pretty stunning when we put this in the cell — and you’ll appreciate our very sophisticated graphics here — the new chromosome went into the cell.
当我们将它放入细胞时发生的情形非常惊人 你们应该会喜欢 我们所制作的非常精密的演示图像 — 新的染色体进入细胞。
97.In fact, we thought this might be as far as it went, but we tried to design the process a little bit further.
实际上我们原以为这个过程就到此为止了。 但是我们试图将这个过程设计得更深入一些。
98.This is a major mechanism of evolution right here.
这是一个重大的进化机制。
99.We find all kinds of species that have taken up a second chromosome or a third one from somewhere, adding thousands of new traits in a second to that species.
我们发现所有接受了 第二段染色体的物种 或来自其他地方的第三方染色体, 在一秒钟内增加了 数千种新特征到其自身。
100.So people who think of evolution as just one gene changing at a time have missed much of biology.
原本人们所持有的在进化的过程中 每次只会有一个基因发生变化 的观念忽略了生物的许多实际情况。
101.There’s enzymes called restriction enzymes that actually digest DNA.
有一种酶叫做限制酶 是能够消化DNA的
102.The chromosome that was in the cell doesn’t have one.
原先细胞中的染色体没有这种酶 没有这种酶
103.The cell — the chromosome we put in — does.
而当我们置入一段拥有这种酶的染色体
104.It got expressed, and it recognized the other chromosome as foreign material, chewed it up, and so we ended up just with the cell with the new chromosome.
它表现了出来,并且辨认出 另一段染色体是外来物质, 它就将其消化,最后我们就有了 一个包含有新的DNA的细胞

ted演讲稿中英文对照

CornielleEwango_刚果森林的英雄【中英文对照】

2024-3-16 20:21:51

ted演讲稿中英文对照

CynthiaSchneider_选秀节目掀起追捧热潮【中英文对照】

2024-3-16 20:23:19

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索